

Biological Forum – An International Journal

14(3): 26-31(2022)

ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239

Diversity of Praying Mantis in Gardenland Ecosystems of Coimbatore

Ragasruthi M.¹, R. Arulprakash^{2*}, N. Chitra³ and K. Sivasubramanian⁴
 ¹Research Scholar, Department of Agricultural Entomology,
 Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India.
 ²Assistant Professor (Agricultural Entomology), Department of Agricultural Entomology
 Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India.
 ³Professor (Agricultural Entomology), Department of Agricultural Entomology,
 Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India.
 ⁴Associate Professor (Environmental Science), Department of Environmental Science,
 Tamil Nadu Agricultural University, Coimbatore (Tamil Nadu), India.

(Corresponding author: R. Arulprakash*) (Received 03 May 2022, Accepted 22 June, 2022) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Study on mantid diversity in gardenland crop ecosystems of Coimbatore district, Tamil Nadu revealed the occurrence of 16 species belonging to 13 genera under 7 families. Among the families, Gonypetidae was represented by four species; Eremiaphilidae, Hymenopodidae and Mantidae represented by three species each and Amophoscelidae, Toxoderidae and Empusidae by one species each. *Euantissa pulchra* was abundant and observed in many crop ecosystems of gardenland followed by *Humbertiella similis, Humbertiella nigrospinosa* and *Elmantis tricomaliae*. Coconut ecosystem harboured maximum number of individuals as well as mantid species followed by *Humbertiella nigrospinosa*. Higher and lower species richness and diversity was observed in Periyanayakkanpalayam and Anaimalai blocks respectively.

Keywords: Praying mantis, species richness, diversity, gardenland ecosystem, Coimbatore

INTRODUCTION

Praying mantis are attractive, cryptic and solitary insects occur in tropical and subtropical climatic conditions (Schultz, 2018). Both nymphs and adult are ambush predators in terrestrial ecosystem and play a vital role in natural control of insect pests (Svenson and Whiting 2004). Mantids snatch the prey using its raptorial forelegs, adults devour larger insects like grasshoppers, beetles, crickets while nymphs predate on aphids, leafhoppers, caterpillars and other soft bodied insects (Loxton and Nicholl 1979). They also serve as bio-indicators of environmental loss (Battiston et al., 2020). Globally over 2300 species of mantids under 436 genera and 15 families were reported (Schwarz and Roy 2019). In India, the number of mantid species reported are 184 under 73 genera and 11 families which includes 44 species belonging to 36 genera and 9 families from Tamil Nadu (Ghate et al., 2019). Reports in Tamil Nadu includes those of Chandra and Sharma (2009); Vyjayandi et al. (2010); Srikumar et al. (2018); Meeran et al. (2021).

Considering their importance as predators in cultivated ecosystem, the present work was conducted to inventorize the diversity of mantids in gardenland crop ecosystems of Coimbatore.

MATERIALS AND METHODS

Exploratory surveys were made from November 2021 to April 2022 to study the diversity of praying mantis in garden land ecosystem of Coimbatore district (Table 1). Sampling of mantids was done by visual inspection (Brannoch *et al.*, 2017). The morphological characters were observed using Leica S8APO stereo microscope; photographed with Leica M205C microscope and Nikon D3100 DSLR camera. Species identification was done by following the keys of Mukherjee *et al.* (1995); Vyjayandi (2007).

Relative abundance of sampled data was computed by the following Yu and Yoo (2015). Biodiversity indices *viz.*, Margalef species richness index (α) (Margalef, 1958), Simpson's diversity index (D) (Simpson, 1949), Peilou's evenness index (J') (Pielou, 1966) and Berger-Parker Dominance index (May, 1975) were computed using online freeware biodiversity calculator to reveal the species richness, diversity, evenness and dominance of mantid species in different blocks of Coimbatore district.

Sr. No.	Block (Coimbatore)	Geo-co	Cuona	
		Latitude	Longitude	Crops
1.		10.490614 N	76.979828 E	Coconut
2.		10.361599 N	76.979230 E	Tea
3.	Anaimalai	10.402855 N	76.992796 E	Tea
4.		10.324878 N	76.946846 E	Coffee
5.		10.328324 N	76.946685 E	Pepper
6.		11.2446786 N	77.1023887 E	Arecanut
7.	Annur	11.229766 N	77.13077 E	Coconut
8.		11.232652 N	77.119994 E	Forage crop
9.	Karamadai	11.32098 N	76.941161 E	Almond, teak
10.		10.823337 N	76.930204 E	Coconut
11.		10.806872 N	76.947853 E	Cotton
12.	Kinathukadavu	10.804640 N	76.912770 E	Banana
13.		10.837120 N	76.978900 E	Pulses
14.		10.817399 N	76.987496 E	Cocoa
15.	Madukkanai	10.867786 N	76.942508 E	Fodder
16.	Мациккага	10.869791 N	76.947046 E	Coconut
17.		11.179812 N	76.923359 E	Mango
18.		11.112709 N	76.954698 E	Tamarind
19.		11.13824 N	77.003726 E	Coconut
20.		11.007524 N	76.916938 E	Sugarcane
21.		11.009187 N	76.928482 E	Papaya
22.	Dorivanavakkannalavam	10.994427 N	76.915104 E	Paddy
23.	Periyanayakkanpalayam	11.014973 N	76.931587 E	Ornamental plants
24.		11.0068197 N	76.9290862 E	Medicinal plant
25.		11.0079551 N	76.9396390 E	Cotton
26.		11.0189349 N	76.9312299 E	Pulses
27.		11.0194842 N	76.9294208 E	Cotton
28.		11.0194842 N	76.9294208 E	Sorghum
29.	Domum	10.972094 N	76.900265 E	Moringa
30.	rerui	10.974177 N	76.909930 E	Coconut
31.	Dollaahi	10.665757 N	76.882058 E	Amla
32.	ronaciii	10.656776 N,	76.886689 E	Mango
33.		10.9962727 N	76.799642 E	Jasmine
34.	Thondamuthur	11.000638 N	76.855003 E	Curryleaf
35.		11.006751 N	76.806535 E	Jackfruit, Citrus
36.		10.993140 N	76.851375 E	Maize

Table 1: Details of the mantid sampling locations in Coimbatore district of Tamil Nadu.

RESULTS AND DISCUSSION

A total of 227 mantids were collected during the exploratory survey conducted for a period of six months from 10 blocks of Coimbatore district. Morphological characterization revealed the occurrence of 16 species of mantids belonging to 13 genera under 7 families. Among the families, Gonypetidae was dominant and represented by four species followed hv Eremiaphilidae, Hymenopodidae, Mantidae (three species each), Amophoscelidae, Toxoderidae and Empusidae (One species each). Among the species, Euantis sapulchra Fabricius (Family: Hymenopodidae) (21.1 %) was abundant followed by Humbertiella similis Giglio-Tos (19.8 %), Humbertiella nigrospinosa Sjostedt (17.6 %) and Elmantis tricomaliae Saussure (13.2 %) (Family: Gonypetidae). Above results are in accordance with the findings of Hiral et al. (2018); Dwari & Amal (2018); Patel et al. (2018). They reported the dominance of Mantidae and Hymenopodidae in terrestrial ecosystems. Srikumar et al. (2018) reported occurrence of eight species of mantis from the tea plantations of Tamil Nadu. However, in the present study no mantid species was observed in the tea plantations of Anaimalai block of Coimbatore district. This may be because of the use of pesticides or alterations in the climatic conditions (Battiston and Fontana 2010).

The mantid species, *Euantissa pulchra* was noticed in crops like paddy, sorghum, pulses, cotton, sugarcane, coconut, banana, citrus, curry leaf and ornamental

plants. Whereas, some species were observed only in specific crop ecosystems like *Cheddikulama straminea* in ornamental plants; *Didymocorypha lanceolata*, *Schizocephala bicornis* and *Parathespis humbertiana* in forage crops; *Humbertiella indica* in mango and *Gongylus gongylodes* in medicinal plants. According to Soomro *et al.* (2013), *Humbertiella indica* resemble bark and prefers to colonize trees. Similarly, *Schizocephala bicornis* mimics like stick and prefers grassland ecosystem (Mukherjee *et al.*, 1995). From the above observations it is evident that a particular species inhabits specific microhabitat because of its camouflage ability to protect itself from their enemies.

Among the garden land crops surveyed, maximum number of species was recorded in coconut (6 species) followed by forage crops (4), sorghum (3), cotton (3), sugarcane (3), mango (3), banana (3), ornamental plants (3) and teak (3). In crops like maize, cocoa, arecanut, papaya, jack, amla, curry leaf, jasmine and medicinal plants occurrence of only one species was observed. Abundance of mantids was higher in coconut ecosystem (57 Nos.) followed by mango, cotton (21 each), ornamentals (17) and teak (16) which reveals that majority of praying mantis prefer unaltered ecosystems *viz.*, trees, ornamental plants and organic field conditions.

Elmantis tricomaliae was observed in nine out of 10 locations surveyed followed by *Humbertiella nigrospinosa*, *Humbertiella similis* (8 locations) and *Euantissa pulchra* (5). Maximum number of mantid

species was recorded in Perianayakkanpalayam (PPM) (13 species) (Margalef Index (MI) = 2.77) followed by Thondamuthur (TDM) (7 species) (MI = 1.91), Annur (ANR) (MI = 1.2) and Kinathukadavu (KKD) (MI = 1.2) (5 species in each location). In Anaimalai (ANA), only two species of mantids were recorded. Simpson's diversity index varies from 0 to 1. Increase in the value of index indicates decrease in diversity and *vice-versa* of species. Simpson's index indicated higher mantid

diversity in PPM (0.154) and TDM (0.13) and lower in ANA (0.43). According to Berger-Parker index of dominance, *Humbertiella similis* was dominant in ANA, KRA, MDU, POL; *Humbertiella nigrospinosa* dominant in ANR, KKD; *Euantissa pulchra* in PPM, TDM and *Elmantis tricomaliae* in PRU. Peilou's evenness index showed higher species evenness in Anamalai (0.99) and lower in Madukkaraiblock (0.82).

 Table 2: Occurrence of mantis species in gardenland ecosystem of Coimbatore District and their relative abundance.

Sr. No.	Species		A N A	A N R	K R A	K K D	M D U	PP M	P R U	P O L	T D M	RA (%)
		Amo	ophoscelidae				·					
1.	Amorphoscelis annu	licornis	×	 ✓ 	×	×	×	×	\checkmark	×	\checkmark	2.39
	*	Ere	miaphilidae									
2.	Cheddikulama stra	minea	×	×	×	×	×	\checkmark	×	×	×	0.48
3.	Didymocorypha lan	ceolata	×	×	×	×	\checkmark	V	×	×	×	0.96
4.	Schizocephala bio	cornis	×	×	×	×	×	V	×	×	×	3.52
		То	oxoderidae									
5.	Parathespis humbe	ertiana	×	×	×	×	~	×	×	×	×	0.44
		Go	onypetidae									
6.	Elmantis tricoma	ıliae	V	· /	~	 ✓ 	×	~	~	~	\checkmark	13.40
7.	Humbertiella ind	dica	×	×	×	×	×	×	×	~	×	2.21
8.	Humbertiella nigrospinosa		×	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark	17.62
9.	Humbertiella similis			 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	×	~	\checkmark	19.82
		Ε	mpusidae									
10.	Gongylus gongyl	odes	×	×	×	×	×	~	×	×	×	1.44
		Hyn	nenopodidae									
11.	Creobroterapic	alis	×	×	×	\checkmark	×	 ✓ 	×	×	×	2.39
12.	Euantissa pulchra		×	 ✓ 	×	\checkmark	×	~	×	×	\checkmark	20.57
13.	3. Hestiasula brunneriana			×	×	×	×	\checkmark	×	×	\checkmark	4.31
		Ν	Mantidae									
14.	Hierodula dov	eri	×	×	×	×	×	~	×	×	\checkmark	4.85
15.	Hierodula membranacea		×	×	×	×	×	\checkmark	\checkmark	×	×	1.32
16.	16. Statilia maculata		×	×	×	×	×	 ✓ 	×	×	×	1.32
	Note:() mai	k indicates pre	sence of spec	ies; (\times)	mark iı	ndicate	s absei	nce of s	pecies			
			Abbreviat	ions use	d							
ANA	Anaimalai	MDU		Madul	karai			TI	DM		Thone	lamuthur
ANR	Annur	PPM	Periy	/anayak	kanpala	ayam						
KRA	Karamadai	PRU		Per	ur	RA Relati		Relative	ative abundance			
KKD	Kinathukadavu	POL		Polla	ichi							

Table 3: Diversity of mantids in garden land ecosystem.

Mantid species	Crops						
Family: Amophoscelidae							
Amorphoscelis annulicornis	Coconut, arecanut, citrus, jack,						
Family: Eremiaphilidae							
Cheddikulama straminea	ea Ornamental plants						
Didymocorypha lanceolata	Forage crops						
Schizocephala bicornis	Forage crops						
Family: Toxoderidae							
Parathespis humbertiana	Forage crops						
	Family: Gonypetidae						
Elmantis tricomaliae	Paddy, coconut, mango, tamarind, teak						
Hubertiella indica	Prtiella indica Mango						
Humbertiella nigrospinosa	Coconut, mango, moringa, teak						
Humbertiella similis	<i>tilis</i> Coconut, cocoa, amla, moringa, teak						
Family: Empusidae							
Gongylus gongylodes	Gongylus gongylodes Medicinal plants						
	Family: Hymenopodidae						
Creobroter apicalis	Pulses, cotton, banana						
Fugetissa pulchra	Paddy, sorghum, pulses, cotton, sugarcane, coconut, banana, citrus, curryleaf,						
	ornamental plants						
Hestiasula brunneriana	Forage crops, coconut, tamarind, jasmine, ornamental plants						
	Family: Mantidae						
Hierodula doveri	a doveri Sorghum, cotton, sugarcane, ornamental plants						
Hierodula membranacea	Sorghum, banana						
Statilia maculate	Maize, sugarcane, papaya						

Table 4: Species richness and diversity of mantids in different blocks of Coimbatore district.

Sr. No.	Place of collection	Margelef's Index of Species Richness (α)	Simpson's Diversity Index (D)
1.	Anaimalai	0.5139	0.4286
2.	Annur	1.214	0.2222
3.	Karamadai	0.7578	0.3846
4.	Kinathukadavu	1.228	0.2585
5.	Madukkarai	1.365	0.3056
6.	Periyanayakkanpalayam	2.771	0.154
7.	Perur	1.108	0.3048
8	Pollachi	0.8049	0.3788
9.	Thondamuthur	1.914	0.1304

Table 5: Dominance of mantid fauna recorded in different blocks of Coimbatore district.

Sr. No.	Dominant insect	Location	Berger-Parker Index of Dominance
1.		Anaimalai	0.5714
2.	II h anti alla similia Ci alia Tas	Karamadai	0.571
3.	numbertietta similis Orgilo-10s	Madukkarai	0.556
4.		Pollachi	0.5
5.	Humboutiella nigueaninean Siestedt	Annur	0.3333
6.	Humberliella higrospinosa Sjosledi	Kinathukadavu	0.423
7.		Periyanayakkanpalayam	0.342
8.	Euantissa pulchra Fabricius	Thondamuthur	0.217
9.	Elmantis tricomaliae Saussure	Perur	0.467

Fig. 1. Species composition of mantid families.

Fig. 3. Abundance of mantid fauna in different gardenland crops.

CONCLUSION

This study has provided fundamental information on the diversity of mantid fauna in the gardenland crop ecosystem of Coimbatore district, Tamil Nadu. A total of sixteen species of mantids were recorded in the study. *Euantissa pulchra*, *Humbertiella similis*, *Humbertiella nigrospinosa* and *Elmantis tricomaliae* were abundant. Mantid species richness and diversity were higher in Periyanayakkanpalayam block yielding more than thirty percent of the total specimen count. Six months study revealed the occurrence of 16 mantid species, intensive study could exhibit the presence of more number of species, even occurrence of new species. Further, this is the first report on the mantid diversity from Coimbatore district of Tamil Nadu.

FUTURE SCOPE

It is evident that with only six months of survey, focusing on understudied areas can result in new records, new species, and additional knowledge improvements to biodiversity understanding. Furthermore, this research is important for conserving as well as assessing the influence of habitat change on Mantodea diversity.

Acknowledgement. The authors are grateful for the facilities provided by the Department of Agricultural Entomology, Tamil Nadu Agricultural University for the study. Conflict of interest. None.

REFERENCES

- Battiston, R., di Pietro, W., Amerini, R., & Sciberras, A. (2020). The praying mantids (Insecta: Mantodea) as indicators for biodiversity and environmental conservation: a case study from the Maltese and Balearic archipelagos. *Biodiversity*, 21(3): 142-149.
- Battiston, R., & Fontana, P. (2010). Colour change and habitat preferences in *Mantis religiosa*. Bulletin of Insectology, 63(1): 85-89.
- Brannoch, S. K., Wieland, F., Rivera, J., Klass, K. D., Béthoux, O., & Svenson, G. J. (2017). Manual of praying mantis morphology, nomenclature, and practices (Insecta, Mantodea), *ZooKeys*, 696: 1–100.

- Chandra, K. & Sharma, R. M. (2009). Insecta: Mantodea. Zoological Survey of India, 17: 61-63.
- Dwari, S., & Amal, K. M. (2018). Diversity of mantids (Insecta: Mantodea) of Howrah District, West Bengal, India. Journal of Entomology and Zoology Studies, 6(2): 1038-1042.
- Ghate, H. V., Jadhav, S. S., Sureshan, P. M., & Sharma, R. M. (2019). Updated checklist of Indian Mantodea (Insecta).
- Hiral, P., Shukla, A., & Pratik, S. (2018). Biodiversity of praying mantids (Insecta: Mantodea) in Gujarat, India. *Journal of Entomology and Zoology Studies*, 6(4): 455-459.
- Loxton, R. G., & Nicholls, I. (1979). The functional morphology of the praying mantis forelimb (Dictyoptera: Mantodea). *Zoological Journal of the Linnean Society*, 66(2): 185-203.
- Margalef, R. (1958). Temporal succession and spatial heterogeneity in natural phytoplankton. University of Califonia Press, Berkeley, 323-347.
- Meeran, M., Fathima, S., Pirya, S., Arivoli, S., & Tennyson, S. (2021). Assessment of insect diversity in paddy fields of Uthamapalayam, Theni district, Tamil Nadu, India. Journal of Wildlife and Biodiversity, 5(2), 88-98.
- May, R. M. (1975). Patterns of species abundance and diversity. *Ecology and evolution of communities*, 81-120.
- Mukherjee, T. K., Ghosh, A. K., &Hazra, A. K. (1995). The mantid fauna of India (Insecta: Mantodea). Oriental Insects, 29(1): 185-358.
- Patel, H. N., Shukla, A., & Prajapati, J. N. (2018). Diversity of praying Mantids (Insecta: Mantodea) from various ecosystems of south Gujarat, India. *Journal of Entomology and Zoology Studies*,6(4): 167-169.
- Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. *Journal of theoretical biology*, 13: 131-144.
- Schwarz, C. J., & Roy, R. (2019). The systematics of Mantodea revisited: an updated classification incorporating multiple data sources (Insecta: Dictyoptera). In Annales de la Société entomologique de France (NS), 55(2): 101-196.
- Schultz, M. (2018). Mimicry in Insects: An Illustrated Study in Mimicry and Cryptic Coloration in Insects. University of Nebraska – Lincoln. 1-39.
- Svenson, G. J., & Whiting, M. F. (2004). Phylogeny of Mantodea based on molecular data: evolution of a

charismatic predator. *Systematic Entomology*, 29(3): 359-370.

- Simpson, E. H. (1949). Measurement of diversity. *Nature*, 163(4148): 688-688.
- Soomro, N., Khokhar, J., & Soomro, M. (2013). Biodiversity and biogeography of praying mantids in sindh. Sindh University Research Journal-SURJ (Science Series), 45(2): 297-300.
- Srikumar, K. K., Smitha, S., Kumar, B. S., & Radhakrishnan, B. (2018). Diversity of mantids in tea plantation. *Indian Society for Plantation Crops*, 46(3): 221.
- Vyjayandi, M. C. (2007). Mantid fauna of Kerala, India. Zoological Survey of India, 267: 1-169.
- Vyjayandi, M. C., Rajeesh, R. S., John, P. S., & Dhanasree, M. M. (2010). Some interesting species of praying mantids (Insecta: Mantodea) from Valparai, Tamil Nadu, India. Journal of Entomological Research, 10(2): 155-160.
- Yu, D. S., &Yoo, S. H. (2015). VBioindex: a visual tool to estimate biodiversity. *Genomics & informatics*, 13(3): 90.

How to cite this article: Ragasruthi M., R. Arulprakash, N. Chitra and K. Sivasubramanian (2022). Diversity of Praying Mantis in Gardenland Ecosystems of Coimbatore. *Biological Forum – An International Journal*, *14*(3): 26-31.